Roll No.

(01/22-II)

5160

B.A./B.A. (Hons.)/B.Sc. EXAMINATION

(First Semester)

MATHEMATICS

BM-112

Calculus

Time: Three Hours Maximum Marks:

B.Sc.: 40

B.A.: 26

Note: Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory. All questions carry equal marks.

- 1. (i) Show by definition that the function f(x) = 3x + 4 has limit 10 when $x \to 2$.
 - (ii) Expand $\sin^{-1} x$ in powers of x by Maclaurin's series.
- (iii) Define asymptote and give two different (5 07/3) B-5160 P.T.O.

forms of definition of asymptote.

- (iv) Defit the concavity and convexity of a curve.
- (v) State Pappu's and Guldin's theorem for volume of revolution.

Section I

- 2. (i) Using $\varepsilon \delta$ definition, prove that $\cos^2 x$ is a continuous function.
 - (ii) Show that the function:

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is continuous and derivable at x = 0, but its derivative is not continuous at x = 0.

3. (i) If $y = (\sin^{-1} x)^2$, prove that :

$$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-n^2y_n=0.$$

(ii) Expand tan x in powers of $x - \frac{\pi}{4}$ upto first four terms.

Section II

4. (i) Find all the asymptotes of the curve:

$$x^3 + 3x^2y - 4y^3 - x + y + 3 = 0$$

(ii) Find the asymptotes of the curve:

$$r\cos\vartheta = a\sin^2\vartheta$$
.

5. (i) If ρ_1 and ρ_2 are the radii of curvature at the extremities of a pair of semi-conjugate diameters of an ellipse, prove

that
$$\left[(\rho_1)^{\frac{2}{3}} + (\rho_2)^{\frac{2}{3}} \right] (ab)^{\frac{2}{3}} = a^2 + b^2$$
.

(ii) Find the radius of curvature for the curve $r^n = a^n \cos n\vartheta$.

Section III

6. Trace the curve $r = a(1 = \sin \vartheta)$.

- 7. (i) Find the reduction formula for $\int \sin^n x.dx$ and hence evaluate $\int \sin^4 x.dx$.
 - (ii) Find the entire length of the cardioid $r = a(1 \cos \vartheta)$, and show that the arc of the upper half of the cardioid is bisected by $\vartheta = \frac{2\pi}{3}$.

Section IV

- 8. (i) Find the area common to the parabola $y^2 = 4ax$ and $x^2 = 4ay$.
 - (ii) Find the area of a loop of the curve $x^3 + y^3 = 3axy$.
- 9. (i) The loop of the curve $2ay^2 = x(x-a)^2$ revolves about x-axis. Find the volume of the solid so formed.
 - (ii) Find the surface of the right circular cone formed by the revolution of a right-angled triangle about a side which contains the right angle.