Roll No.

(01/22-II)

5200

B.A./B.A. (Hons.)/B.Sc. EXAMINATION

(Third Semester)

MATHEMATICS

BM-232

Partial Differential Equations

Time: Three Hours Maximum Marks:

B.Sc.: 40

B.A.: 26

Note: The candidates are required to attempt five questions in all, selecting the compulsory Q. No. 1 and one question from each Unit.

Marks in brackets are for B. A. students.

Compulsory Question

1. (a) Define singular solution and general solution of PDE. 2(2)

(6-18/1) B-5200

P.T.O.

(b) Solve
$$(D^4 + D'^4)z = 0$$
. $1\frac{1}{2}(1)$

(c) Classify
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$
. $1\frac{1}{2}(1)$

- (d) Define Laplace equation and wave equation. 1½(1)
- (e) Solve $2\frac{\partial^2 z}{\partial x^2} + 5\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0$. $1\frac{1}{2}(1)$

Unit I

2. (a) Find the partial differential equation of all spheres whose centre lie on z-axis.

4(21/2)

(b) Solve
$$(x^2 + 2y^2)p - xyq = xz$$
. $4(2\frac{1}{2})$

3. (a) Find complete integral of x(1+y)p = y(1+x)q. 4(2½)

(b) Find complete integral of px + qy = pq using Charpit's method. $4(2\frac{1}{2})$

Unit II

4. (a) Solve:

$$(D^3 - 4D^2D' + 5DD'^2 - 2D'^3)z = e^{2x+y}$$
.

4(21/2)

(b) Solve:

$$\left(D^2 - DD' + D' - 1\right)z = \cos\left(x + 2y\right).$$

 $4(2\frac{1}{2})$

5. (a) Solve:

$$(x^2D^2 + 2xyDD' + y^2D'^2)z = x^2y^2$$

4(21/2)

(b) Solve:

$$(3D^{2} - 2D'^{2} + D'^{-1})z = 4e^{x+y}\cos(x+y).$$

 $4(2\frac{1}{2})$

Unit III

6. Reduce
$$\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$$
 to canonical form. 8(5)

7. Solve:
$$x^{-2}r + y^{-2}t = x^{-5}p - y^{-3}q$$
. 8(5)

Unit IV

8. Solve the Cauchy problem for the equation $\frac{\partial^2 z}{\partial x^2} - \frac{1}{C^2} \cdot \frac{\partial^2 z}{\partial t^2} = 0, \quad C > 0 \quad \text{subject to the}$

conditions
$$z(x,0) = f(x)$$
 and $\left[\frac{\partial z}{\partial t}\right]_{t=0}^{=g(x)}$.

9. (a) Solve the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ with the conditions:

$$u(0,t) = u(l,t) = 0, u(x,0) = x(l-x).$$

4(21/2)

(b) Describe the method of separation of variables to find the solution of Laplace equation.

4(2½)