Roll No.

(01/22-II)

5239

B. A./B.Sc. EXAMINATION

(Fifth Semester)

MATHEMATICS

BM-351

Real Analysis

Time: Three Hours

Maxi. Marks:

B.Sc.: 40

B.A.: 27

Note: Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory. All questions carry equal marks.

Marks for B. A. will be 2/3 of total marks.

Section I

1. (a) A function f is defined on [1, 3] as

$$f(x) = \begin{cases} x^2 - \frac{|x|}{x} & \text{if } 1 \le x \le 2\\ 1 & \text{if } 2 < x \le 3 \end{cases}$$

Is f integrable on [1, 3]? If so, evaluate

$$\int_{1}^{3} f \, dx$$

(b) Examine the convergence of the integral

$$\int_{0}^{\infty} \frac{dx}{1+x^2}.$$

- (c) Prove that every closed subset of a compact metric space is compact. 1
- (d) If a > 0, b > 0, prove that:

$$\int_{0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} dx = \log \frac{b}{a}$$

- (e) Show that every totally bounded metric space is bounded.
- (f) State finite intersection property in a metric space. Give an example also. 2

B-5239

Section II

- 2. (a) Show that a bounded function having a finite number of points of discontinuity on [a, b] is integrable on [a, b].
 - (b) Evaluate $\int_{1}^{3} (x^2 + 2x + 3) dx$ by using limit of Riemann sums.
- 3. (a) Prove the inequality: $\frac{\sqrt{3}}{8} \le \int_{\pi/4}^{\pi/3} \frac{\sin x}{x} dx \le \frac{\sqrt{2}}{6}$
 - (b) If f and g are integrable on [a, b] and g keeps the same sign over [a, b], then there exists a number λ between the bounds of f on [a, b] such that : 4

$$\int_{a}^{b} fg \, dx = \lambda \int_{a}^{b} g \, dx.$$

Section III

4. (a) If f and g are two positive functions on [a, b], a being the only point of infinite discontinuity such that:

$$\bigcup_{x \to a^+} \frac{f(x)}{g(x)} = l \neq 0, \infty, \text{ then the two}$$

integrals $\int_a^b f dx$ and $\int_a^b g dx$ converge or diverge together at 'a'.

(b) Show that $\int_{1}^{\infty} \frac{\sin x}{x} dx$ is convergent. 4.

5. (a) Show that the integral $\int_{0}^{\infty} x^{n-1}e^{-x}dx$ is convergent if n > 0.

(b) Prove that:

4

$$\int_{0}^{\pi/2} \frac{dx}{(a^2 \sin^2 x + b^2 \cos^2 x)^2} = \frac{\pi (a^2 + b^2)}{4a^3 b^3}.$$

Section IV

6. (a) Prove that any metric space (X, d), bounded or not can be converted into a bounded metric space (X, d) where: 4

$$d*(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

- (b) Prove that in a metric space, the intersection of finite number of open sets is open.

 4
- 7. (a) Prove that a subspace Y of a complete metric space X is complete iff it is closed.

4

(b) Show that in a metric space [0, 1] with usual metric d(x, y) = |x - y|, the sequence $a_n = \frac{1}{n}$ is a Cauchy sequence but does not converge in (0, 1].

on

ite

0

r

Section V

- 8. (a) Prove that the function $f: R \to R$ such that $f(x) = x^2$ for all $x \in R$ is not uniformly continuous on R.
 - (b) Prove that a compact subset of a metric space is closed and bounded. 4
- 9. (a) Prove that continuous image of a connected space is connected.
 - (b) Prove that a metric space (X, d) is compact iff every infinite subset A of X has a limit point in X (BWP).

B-5239