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" Note : Attempt Five questions in all, selecting one
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Examine the convergence of the integral
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(b)

If fand g are integrable on [a, b] and g

Show that a bounded function hav

finite number of points of discontin

on [a, b] is integrable on [a, b].

Evaluate [(x”+2x+3)dx by using limit

1
of Riemann sums. 4
Prove the inequaiiiy : 4. ; M
=

keeps the same sign over [a, b], ther



Section III

4. (@) Iffand g are two positive ﬁmctlons on
[a, b], a being the only point of infini -
disqontinuity such that :

U v ——==1(#0,), then the two '

0 g\x

b
integrals _[ fdx and I gdx converge or

diverge together at ‘a’. 4

(b) Show that J' wdx is convergent. 4.
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Section IV

Prove that any metric Spac

bounded or not can be converted i
bounded metric space (X, d) whe

d(x,y)
1+d(x, y)

d*(x5y)=-

the

intersection of finite number of open sets fﬁ‘

Prove that in a metric Space,

»e‘%'r

is open. 4
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Prove that a subspace Y of a complete

metric space X is complete iff it is closed.

Show that in a metric space [Q ‘1] '

| usual 1;11%1'10 d(x, y)—|
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Section V

Prove that the function f:R —» R such
that 7(x)= x2 for all xeR 1§
uniformly continuous on R. | 4
Prove that a compact subset of a metric

space is closed and bounded. 4

Prove that continuous image of a
connected space is connected. 4
Prove that a metric space (X, d) i1s
compact iff every infinite subset A of X
has a limit point in X (BWP). B




