Roll No.

(01/22-II)

5157

B.Sc. EXAMINATION

(First Semester)

PHYSICS

Paper I (PH-101)

Classical Mechanics and Theory of Relativity

Time: Three Hours Maximum Marks: 40

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

- 1. (a) Define center of mass of a body and discuss its importance. 2
 - (b) Write the Lagrange's equation for nonconservative system.

(3-06/7) B-5157

P.T.O.

- (c) Comment on the statement that velocity of light is absolute.
- (d) What do you mean by rest mass of a body?

Unit I

2. (a) Show that constraint imposed on a system, reduces the minimum number of co-cordinates required to describe system.

4

(b) Prove that angular momentum is conserved in motion under central force.

4

3. (a) Dfine potential energy and conservative force. Show that a conservative force is equal to the negative gradient of potential energy.

(b) Three particles having masses 1 gm, 2 gm and 4 gm are located at points (3, 2), (4, -1) and (3, 7) in a plane. Find the co-ordinates of the centre of mass.

Unit II

- 4. (a) Discuss the motion of a bead sliding on an uniformly rotating wire on a force free surface.
 - (b) State and prove Hamilton's principle and use it to obtain the equation of motion $ma = -\frac{\partial V}{\partial x}, \text{ for a particle of mass } m$ moving with acceleration a in a potential V.
 - 5. (a) Set up the Lagrangian function for a simple pendulum and hence obtain the equation describing its motion.
 - (b) Define generalized co-ordinates and obtain the expression for generalized velocity.

Unit III

- 6. (a) Prove that law of conservation of energy and momentum are invariant under Galilean transformation.
 - (b) Explain Newton's relativity principle and show that Newton's law of motion are invariant.

 4
- 7. (a) Discuss the effect of coriolis force on a freely falling particle.

 5
 - (b) A ball has a velocity $(3\hat{i} + 6\hat{j} 9\hat{k})$ ms⁻¹ relative to train. The train is moving with velocity of $(8\hat{i} + 2\hat{j})$ ms⁻¹ relative to an observer on the ground. Find the velocity of ball relative to the ground.

Unit IV

8. (a) A given relativistic particle has a kinetic energy equal to its rest mass energy.

Calculate the velocity of the particle. 4

(b) What do you mean by mass-energy equivalence? Obtain Einstein's mass-energy energy relation.

9. Discuss the variation of mass, length and time with velocity, according to special theory of relativity.

BANKOF