Roll No.

(07/22-II)

5189

B. Sc. EXAMINATION

(For Batch 2014 & Onwards)

(Second Semester)

CHEMISTRY

Paper-V (CH-105)

Physical Chemistry

Time: Three Hours

Maximum Marks: 26

Note: Attempt Five questions in all, selecting two questions from each Section. Q. No. 1 is compulsory.

- 1. (a) Describe zero order reaction with example.
 - (b) What is integrated rate expression for first order reaction?
 - (c) What are pseudo unimolecular reaction?
 Give example.

- (d) Define specific conductance.
- (e) What is the relation between pH and pOH of a solution?
- (f) Write the limitations of Ostwald' dilution law.

Section A

- 2. (a) What is Transition State theory? Give the advantages of transition state theory over the collision theory.
 - (b) What is the order of a reaction when half life of a reaction is inversely proportional to the square of the initial concentration? Explain it.
- 3. (a) Briefly explain different methods used for the order of the reaction.
 - (b) Explain Arrhenius equation giving the effect of temperature on the rate constant of a reaction.

- 4. (a) Discuss collision theory for Unimolecular reaction as given by Lindemann. 3
 - (b) Derive expression for 2nd order reaction involving one reactant only.

Section B

- 5. (a) How can the Debye-Huckel-Onsager equation be utilized for determining the equivalent conductance of strong electrolyte at infinite dilution?
 - (b) At 293 K, the equivalent conductance at infinite dilution of HCl, CH₃COONa, NaCl solution are 383.5, 78.4 and 102.0 ohm⁻¹ cm² equiv.⁻¹ respectively. If the equivalent conductance of CH₃COOH at some other dilution is 100 ohm⁻¹ cm² equiv.⁻¹ at 293 K, calculate the degree of dissociation of acetic acid at that dilution.
- 6. (a) Explain briefly the conductometric titration of strong acid with strong base.

 What are the advantages of conductometric titration?

 3

- (b) Calculate the degree of dissociation of acetic acid of conc. 0.1 M using Ostwald's dilution law. Given the dissociation constant of acetic acid $K_d = 1.8 \times 10^{-5}$ at 298 K. 2
- 7. (a) What do you mean by a buffer solution? How a buffer solution resists change in its pH? Explain with suitable example.

(b) What are the limitations of Arrhenius theory?