Roll No.

(01/22-II)

5193

B. Sc. EXAMINATION

(Third Semester)

CHEMISTRY

CH-202

Physical Chemistry

Time: Three He ars

Maximum Marks: 26

Note: Question No. 1 is compulsory. Attempt four questions from Section A and Section B. selecting two questions from each Section.

(Compulsory Question)

- 1. (a) Why is zinc used in Parke's Process for desilverisation of lead?
 - (b) Under what condition k_p , k_c , k_a and k_x are all equal?

(5-07/19)B-5193

P.T.O.

- (c) Which of the properties remain constant when equilibrium is attained?
- (d) The value of equlibirium constant k_p for the reaction $N_2O_4 \Longrightarrow 2NO_2$ at 25°C is 0.14. Calculate standard free energy change ΔG° for the reaction.
- (e) Under what condition an extensive property may become an intensive property? Give an example.
- (f) What is change in internal energy when an ideal gas expands isothermally?

 $1 \times 6 = 6$

Section A

- 2. (a) Derive an expression for the work done in the isothermal reversible expansion of a real gas
 - (b) Calculate the enthalpy change for the reaction $H_2(g) + Br_2(g) \longrightarrow 2HBr(g)$.

B-5193

Given that the Bond energies of H-H Br-Br and H-Br are 435, 192 and 364 kJ mol⁻¹ respectively.

- 3. (a) Derive expression for, molar heat capacities C_p and C_v in terms of internal analysis change and enthalpy change and hence show $C_p C_v = R$ for one mole of an ideal gas.
 - (b) Given that the heat of reaction of burning of Rhombic sulphur (S_R) in oxygen at 25°C to produce SO_2 gas is -296.9 kJ/mol. The heat capacities at constant pressure for $S_R = 23.7$, $O_2 = 29.2$ and $SO_2 = 79.5$ Jk⁻¹ mol⁻¹. Find heat of reaction at 85°C.
- 4. (a) Propane has the structure H₃C-CH₂-CH₃.

 Calculate the change in enthalpy for the following reaction:

$$C_3H_8(g) + SO_2(g) \longrightarrow$$

$$3CO_2(g) + 4H_2O(g)$$
.

Given that average bond enthalpies are:

C - C 347 kJ mol⁻¹

C - H 414 kJ mol⁻¹

 $C = O \qquad 741 \text{ kJ mol}^{-1}$

O = O 498 kJ mol⁻¹

O - H 464 kJ mol⁻¹

(b) How is final temperature of irreversible adiabatic expansion of an ideal gas measured?

Section B

- 5. (a) Calculate the enthalpy change for the reaction $N_2 + O_2 \Longrightarrow 2NO$. Given that the equilibrium constant for this reaction is 4.08×10^{-4} at 2000 K and 3.60×10^{-3} at 2500 K.
 - (b) Starting from Clapeyron equation, how is Clausius-Clapeyron equation obtained?

 Express it in integrated form.

- 6. Apply Le-Chatelier principle to predict suitable conditions for getting maximum yield of the product in each of the following cases:
 - (i) Manufacturing of Ammonia by Haber's Process
 - (ii) Manufacturing of Nitric Oxide by Birkland-Eyde process for manufacturing of Nitric acid.
 - (iii) Manufacturing of Hydrogen by Bosch process. 5
- 7. (a) 0.83 g succinic acid was shaken up with 100 ml each of water and ether. The water layer was found to contains 0.70 g of succinic acid the rest having passed on into ether layer. Calculate the quantity of succinic acid, which can be extracted from 1000 ml of ether solution containing 1 g of the acid, using 100 ml of water in one lot and in two equal fractions. 3

(b) A solute undergoes association in a solvent according to the equation $n_X \longrightarrow X_n$. How can you determine the value of n by applying distribution law?

BANKOF

B-5193