Roll No.

(01/22-II)

5232

B. Sc. EXAMINATION

(Fifth Semester)

CHEMISTRY

CH-301

Inorganic Chemistry

Time: Three Hours

Maximum Marks: 27

Note: Q. No. 1 is compulsory. Attempt Five questions in all, selecting two questions from each Section.

- 1. Short answer type questions:
 - (a) Give relationship between Δ_t and Δ_0 .
 - (b) Calculate CFSE value for d^4 and d^5 tetrahedral ion.
 - (c) What is log β? How is it related to stability of complexes?

- (d) What is Magnetic Susceptibility?
- (e) What is the term symbol of p^6 and d^{10} ?
- (f) Calculate the number of microstates in p^4 configuration.
- (g) Define Curie's point.

 $1 \times 7 = 7$

Section A

- 2. (a) What is the magnitude of crystal field splitting in tetrahedral complexes Δ_t smaller than octahedral complexes, Δ_0 ?
 - (b) Draw and explain the splitting of d-orbital in octahedral crystal field of ligands. 3
- 3. (a) What is chelate effect? How does chelation increase the stability of a complex?
 - (b) Predict the product of the following reactions:
 - (i) $[PtCl_4]^{2-} \xrightarrow{\Gamma} ? \xrightarrow{\Gamma} ?$
 - (ii) $[PtCl_4]^{2-}$ NH_3 ? NH_3 ?

B-5232

4.	(a)	Explain Kurnakov test for the complexes	
		of type [PtA ₂ X ₂].	
	(b)	Calculate CFSE value for the	
		following:	
		(i) d ⁷ (high spin octahedral)	
		(ii) [Cr(CN) ₆] ⁴⁻	
		(iii) d ³ (tetrahedral)	
		Section B	
5.	(a)	Calculate spin magnetic moment for Fe ³⁺	
		and Cu ⁺ ion.	
	(b)	Discuss briefly the Gouy's method for	
		measuring magnetic susceptibility. 3	
		Discourse arbital contribution to magnetic	
6.	(a)	Discuss orbital contribution to magnetic	
		moment in octahedral complexes. 2	
	(b)	Calculate the term symbol for ground	
		state of:	
		(i) $Cr (3d^54s^1)$	
		(ii) Ni $(3d^84s^2)$	
(2-28/2) B-5232 P.T.O			
	, B JESE		

7. (a) Explain in brief Orgel diagram of d³, d⁴, d⁶ and d⁹ complexes in octahedral and tetrahedral field.

(b) Derive term symbol for p² configuration.

2

B/AMMA OF

MARKET STATES

B-5232

2,090