Roll No.

(01/22-II)

5237

B.Sc. EXAMINATION

(Fifth Semester)

PHYSICS

PH-501

Quantum and Laser Physics

Time: Three Hours Maximum Marks: 40

Note: There are nine questions in total. Q. No. 1 is compulsory and have four parts of 2 marks each. Four more questions are to be attempted, selecting one question out of two questions set from each Unit. Use of scientific (non-programmable) calculator is allowed.

- 1. (a) Define quantization of energy and momentum.
- (b) Define orthogonality and normalization (3-07/11)B-5237 P.T.O.

of function.

2

- (c) Describe population inversion and laser pumping. 2
- (d) Describe optical properties of semiconductor.

Unit I

- 2. (a) Define de-Broglie Hypothesis. Explain the Davisson and Germer experiment with conclusion.
 - (b) Calculate de-Broglie wavelength of thermal neutrons at 27°C.
- 3. (a) Explain diffraction of a beam of electrons by a slit.
 - (b) Explain the non-existence of the electron inside the nucleus with the help of uncertainty principle.

 3

Unit II

- 4. Find the solution of Schrödinger equation for harmonic oscillator. Write wave equation for ground state and excited states. Explain zero point energy.
- 5. (a) Discuss the solution of Schrödinger wave equation and find the reflection and transmission coefficient in case of one-dimensional step potential E > 0.
 - (b) Find the lowest energy state of an electron confined in a cubical box of side 1 Å. 2

Unit III

- 6. (a) Discuss Einstein's coefficients, and the possibility of light amplification. 6
 - (b) Calculate the coherence length of a laser beam for which bandwidth $\Delta v = 3000$ Hz.

2

7. Explain the threshold condition for laser emission, line broadening mechanism, homogeneous and inhomogeneous line broadening.

Unit IV

- 8. Discuss the principle, construction and working of semiconductor laser.
- 9. Discuss the principle, construction and working of Ruby laser.

B-5237

4