Roll No.

(07/22-II)

5258

B. Sc. EXAMINATION

(Sixth Semester)

PHYSICS

Paper XI (PH-602)

Atomic and Molecular Spectroscopy

Time: Three Hours Maximum Marks: 40

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

- 1. (a) What is Bohr magneton? Calculate its value.
 - (b) Explain the penetrating and nonpenetrating orbits for alkali elements. 2
 - (c) Give important applications of Raman effect.

(d) Calculate the Lande's g factor and total magnetic moment for the term $^2D_{3/2}$. 2

Unit I

- 2. (a) Discuss the effect of nuclear motion on the spectrum of hydrogen like atom. 5
 - (b) Prove that velocity of hydrogen atom in first Bohr orbit is close to 1/137 times the velocity of light.
- 3. (a) What do you understand by space quantization? Explain the significance of quantum numbers. How are they related?
 - (b) An electron is made to collide with a hydrogen atom in its ground state and excites it to n = 3. Find the energy gained by hydrogen atom.

Unit II

4. (a) Discuss the theory of spin orbit interaction and derive an expression for spin orbit interaction energy for single valence electron.

(b)	What	is	the	signi	ific	ance	of	Larmo	r's
	preces	sion	the	orem	in	atom	ic	structure	?
									3

- 5. (a) Discuss the following:
 - (i) Quantum states of atomic electron
 - (ii) Term value
 - (iii) Multiplicity of terms.
 - (b) Find the values of S, L and J for the terms ${}^{1}P_{1}$, ${}^{3}S_{1}$, ${}^{3}P_{2}$ and ${}^{3}D_{2}$.

Unit III

- 6. Discuss the coupling scheme for two valence electron atoms. Find out the spectral terms arising due to S-P and D-d configuration in L-S coupling.
- 7. (a) What is Pauli's principle? Calculate the possible states for p electronic configuration.
 - (b) Obtain the spectrum terms of two equivalent electrons.

(2-11/11) B-5258

Unit IV

- 8. (a) What is Zeeman effect? Explain splitting of D₁ and D₂ lines of sodium in weak magnetic field.
 - (b) Distinguish between anomalous Zeeman effect and Paschen back effect. 4
- 9. (a) Explain quantisation of vibrational and rotational energies of a molecule. 4
 - (b) The exciting line in an experiment is 4560 Å and the stokes line is at 5520 Å. Calculate the wavelength of antistokes line.